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1 Overview

The Libra Toolkit provides a collections of algorithms for learning and inference
with probabilistic models in discrete domains. Each algorithm can be run from the
command-line with a variety of options using the libra script:

libra <command> [options]

Different algorithms share many common options and file formats, so they can be
used together for experimental or application-driven workflows. This user manual
gives a brief overview of Libra’s functionality, describes the file formats used, and
explains the operation of each command in the toolkit. See the developer’s guide
for information on modifying and extending Libra.

1.1 Representations

In Libra, each probabilistic model represents a probability distribution, P (X ), over
set of discrete random variables, X = {X1, X2, . . . , Xn}. Libra supports Bayesian
networks (BNs), Markov networks (MNs), dependency networks (DNs) [8], sum-
product networks (SPNs) [19], arithmetic circuits (ACs) [6], and mixtures of trees
(MT) [17].

BNs and DNs represent a probability distribution as a collection of conditional
probability distributions (CPDs), each denoting the conditional probability of one
random variable given its parents. The most common CPD representation is a
table with one entry for each joint configuration of the variable and its parents. In
addition to tables, Libra also supports tree CPDs and more complex feature-based
CPDs. In a tree CPD, nodes and branches specify conditions on the parent variables,
and each leaf contains the probability of the target variable given the conditions on
the path to that leaf. When many configurations have identical probabilities, trees
can be exponentially more compact than table CPDs. Feature-based CPDs use
a weighted set of conjunctive features. Each conjunctive feature represents a set
of conditions on the parent variables and target variables, similar to the paths in
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the decision tree, except that they need not be mutually exclusive or exhaustive.
Feature-based CPDs can easily represent logistic regression CPDs, boosted trees,
and other complex CPDs. Libra represents MNs as collections of factors or potential
functions, each of which can be represented as a table, tree, or set of conjunctive
features. For general background BNs and MNs, see Koller and Friedman [9]. For
an introduction to DNs, see Heckerman et al. [8].

SPNs and ACs represent a probability distribution as a directed acyclic graph of
sum and product nodes, with parameters or indicator variables at the leaves. When
the indicator variables are set to encode a particular configuration of the random
variables, the root of the circuit evaluates to that configuration’s probability. The
indicator variables can also be set so that one or more variables are marginalized,
which permits efficient computation of marginal and conditional probabilities. The
ability to perform efficient, exact inference is a key strength of SPNs and ACs.
SPNs and ACs are also very flexible, since they can encode complex structures that
do not correspond to any compact BN or MN. Libra has separate SPN and AC
representations. The SPN representation shows high-level structure more clearly,
but the AC representation is better supported for inference. The SPN representation
can be converted to the AC representation.

The mixture of trees (MT) representation represents a probability distribution as
a weighted sum of tree-structured BNs. Since SPNs are good at modeling mixtures,
Libra represents mixtures of trees as SPNs.

For more detail about the model file formats, see Section 4.

1.2 Algorithms

The learning algorithms in Libra fit a probabilistic model to the empirical distribu-
tion represented by the training data. The learning methods currently available in
Libra require that the data be fully-observed so that no variable values are missing.
Most methods learn the model structure as well as its parameters.

Libra includes the following commands for learning probabilistic models:

• cl: The Chow-Liu algorithm for tree-structured BNs [5]

• bnlearn: Learning BNs with tree CPDs [4]

• dnlearn: Learning DNs with tree or logistic regression CPDs [8]

• dnboost: Learning DNs with boosted tree CPDs

• acbn: Using ACs to learn tractable BNs with tree CPDs [11]

• acmn: Using ACs to learn tractable MNs with conjunctive features [13]

• idspn: The ID-SPN algorithm for learning SPN structure [20]

• mtlearn: Learning mixtures of trees [17]

• dn2mn: Learning MNs from DNs [15]

• mnlearnw: MN weight learning, to maximize L1/L2 penalized pseudo-likelihood

• acopt: Parameter learning for ACs, to match an empirical distribution or
another BN or MN [12]
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Inference algorithms compute marginal and joint probabilities, given evidence. For
models that are represented as ACs or SPNs, Libra supports:

• acquery: Exact inference in ACs

• spquery: Exact inference in SPNs

The following inference algorithms are supported for BNs, MNs, and DNs:

• mf: Mean field inference [14]

• gibbs: Gibbs sampling

• icm: Iterated conditional modes [2]

For BNs and MNs, three more inference algorithms are supported:

• bp: Loopy belief propagation [18]

• maxprod: Max-product

• acve: AC variable elimination [3]

The last method compiles a BN or MN into an AC. Thus, acve and acquery can
be used together to perform exact inference in a BN or MN.

A few utility commands round out the toolkit:

• bnsample: BN forward sampling

• mscore: Likelihood and pseudo-likelihood model scoring

• mconvert: Model conversion and conditioning on evidence

• spn2ac: Convert SPNs to ACs

• fstats: File information for any supported file type

2 Installation

Libra was designed to run from the command line under Linux and Mac OS X.
It also may work with Windows (Cygwin environment), but it is not completely
supported in the current version. Libra can be installed using OPAM or manually.

2.1 Installation Using OPAM

The recommended way to install Libra is through the OPAM package manager.
Instructions for installing OPAM can be found at http://opam.ocaml.org/doc/

Install.html. After installing OPAM, run:

opam install libra-tk

Binaries will be installed in the <version>/bin/ subdirectory of your OPAM in-
stallation, where <version> is the OCaml version being used (e.g., system, 4.02.1,
4.01.0). Documentation and example files will be installed in the OPAM subdirec-
tory <version>/share/doc/libra-tk.
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On OS X, the default Clang compiler may fail to build ocaml-expat with the
following error:

expat_stubs.c:23:10: fatal error: ’caml/mlvalues.h’ file not found

To fix this, run the following command before installing:

export C_INCLUDE_PATH=‘ocamlc -where‘:$C_INCLUDE_PATH

Note that this command uses backtics (‘), not single quote (’).

2.2 Manual Installation

If you prefer, you can build and install Libra manually. Libra depends on OCaml
(version 4.00.0 or later), the ocamlfind build tool, and the ocaml-expat library.
To install these using OPAM, first install OPAM (see above) and then run:

opam install ocamlfind ocaml-expat

Libra also depends on GNU Make and the Expat XML parsing library. The
automated tests depend on Perl, awk, and the diff utility. In some OS environments,
these are already installed by default.

After installing the dependencies, download the Libra source code and unpack
the source distribution:

tar -xzvf libra-tk-1.1.2c.tar.gz

cd libra-tk-1.1.2c

This creates the libra-tk-1.1.2c/ directory and makes it your working directory.
For the remainder of this document, all paths will be relative to this directory.

Before building, you can optionally use the configure script to change installa-
tion directories and other settings. Run ./configure --help to see a list of con-
figuration options. For example, ./configure --prefix ~ changes the installation
directory from /usr/local to your home directory.

Next, build the executables:

make

All programs should now be present in the directory bin/, with one executable file
for each command in Libra. For convenience, you may use the libra script, which
acts as an interface to all of the commands in the toolkit.

To install the executables and PDF documentation, run:

make install
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Depending on your system and the installation path, this command may require
superuser permissions. To run the installation step as a superuser, use the command
sudo make install. Alternately, you can change the installation directories using
configure.

To create HTML documentation for the libraries, run:

make doc

This generates ocamldoc-based HTML files for the libraries and puts them in doc/html.
Open doc/html/index.html in a web browser to view the documentation.

3 Quick Start

This section will demonstrate basic usage of the Libra toolkit through a short tuto-
rial. In this tutorial, we will train several models from data, evaluate model accuracy
on held-out data, and answer queries exactly and approximately. All necessary files
are included in the doc/examples/ directory of the standard distribution. These
files are also copied during installation. If you installed Libra using OPAM, they
can be found in the <version>/share/doc/libra-tk/examples/ subdirectory of
your OPAM installation, where <version> is the OCaml version being used (e.g.,
system, 4.02.1, 4.01.0). If you installed Libra manually, the default installation
directory is /usr/local/share/doc/libra-tk/examples/.

As our dataset, we will use the Microsoft Anonymous Web Data1, which records
the areas (Vroots) of microsoft.com that each user visited during one week in Febru-
ary 1998. A small subset of this data is present in the examples directory, already
converted into Libra’s data format: each line is one sample, represented as a list of
comma-separated values (one discrete value per variable).

To continue with the quick start, change to the examples directory:

cd doc/examples

3.1 Training Models

To train a tree-structured BN with the Chow-Liu algorithm, use the cl command:

libra cl -i msweb.data -s msweb.schema -o msweb-cl.bn -prior 1

The most important options are -i, for indicating the training data, and -o, for
indicating the output file. Libra has a custom format for Bayesian networks (.bn)
and also supports two external formats, BIF (.bif) and XMOD (.xmod). (See
Section 4 for more information about file formats.) Libra will automatically guess
the model type from the filename suffix.

1Available from the UCI repository at: http://kdd.ics.uci.edu/databases/msweb/msweb.

html
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The -s option allows you to specify a variable schema, which defines the number
of values for each variable. If unspecified, Libra will guess from the training data.
-prior specifies the prior counts to use when estimating the parameters of the
network, for smoothing2.

The -log flag redirects log output to another file instead of standard output.
You can use the flag -v to enable more verbose output, or -debug to turn on detailed
debugging output. These three flags are valid with any command, although for some
commands they have minimal effect. Try them with cl to see what happens.

To see a list of all options, run libra cl without any other arguments. This
trick works for every command in Libra. You can run libra with no arguments to
see a list of all commands.

Other learning algorithms offer similar options. For example, to learn a Bayesian
network with tree CPDs, use bnlearn:

libra bnlearn -i msweb.data -s msweb.schema

-o msweb-bn.bn -prior 1 -ps 10

The option -ps 10 specifies a “per-split” penalty, so that a tree CPD is only ex-
tended when the new split increases the log-likelihood by more than 10. This acts
as a structure prior, to control overfitting.

The other programs for learning models from data are: dnlearn and dnboost,
for learning DNs, and acbn, acmn, idspn, and mtlearn, for learning various kinds
of tractable models in which exact inference is efficient.

3.2 Model Scoring

We can compute the average log-likelihood per example using the mscore program:

libra mscore -m msweb-cl.bn -i msweb.test

libra mscore -m msweb-bn.bn -i msweb.test

-m specifies the MN, BN, DN, or AC to score, and -i specifies the test data. The
filetype is inferred from the extension. To see the likelihood of every test case
individually, enable verbose output with -v. For DNs and MNs, mscore reports
pseudo-log-likelihood instead of log-likelihood.

You can obtain additional information about models or data files using fstats:

libra fstats -i msweb-cl.bn

libra fstats -i msweb.test

2Specifically, the option -prior α specifies a symmetric Dirichlet prior with parameter α/d,
where d is the number of possible values for the variable.
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3.3 Inference

We can either use exact inference or approximate inference. To do exact inference,
we must first compile the learned model into an AC:

libra acve -m msweb-cl.bn -o msweb-cl.ac

The AC is an inference representation in which many queries can be answered effi-
ciently. However, depending on the structure of the BN, the resulting AC could be
very large. Section 7.1 gives more information about acve. Now that we have an
AC, we can use it to answer queries using acquery. The simplest query is computing
all single-variable marginals:

libra acquery -m msweb-cl.ac -marg

-marg specifies that we want to compute the marginals. The output is a list of
294 marginal distributions, which is a bit overwhelming. We can also use acquery

to compute conditional log probabilities logP (q|e), where q is a query and e is
evidence:

libra acquery -m msweb-cl.ac -q msweb.q -ev msweb.ev

acquery also supports MPE (most probable explanation) queries and a number of
other options; see Section 7.2 for more information.

For approximate inference, we can use mean field (mf), loopy belief propagation
(bp), or Gibbs sampling (gibbs). Their basic options are the same as the tools for
exact inference, but each algorithm has some specific options:

libra mf -m msweb-bn.bn -q msweb.q -ev msweb.ev -v

libra bp -m msweb-bn.bn -q msweb.q -ev msweb.ev -v

libra gibbs -m msweb-bn.bn -q msweb.q -ev msweb.ev -v

See Section 7 for detailed descriptions of the inference algorithms.

4 File Formats

This section describes the file formats supported by Libra.

4.1 Data and Evidence

For data points, Libra uses comma-separated lists of variable values, with asterisks
representing values that are unknown. This allows the same format to be used for
training examples and evidence configurations. Each data point is terminated by a
newline. In some programs (mscore, acbn, and most inference methods), each data
point may be preceded by an optional weight, in order to learn or score a weighted
set of examples. The default weight is 1.0. The following are all valid data points:
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0,0,1,0,4,3,0

0.2|0,0,1,1,2,0,1

1000|0,0,0,0,0,0,0

Evidence files have the same comma separated format, except when the value of a
variable has not been observed as evidence, we put a ‘*’ in the related column:

0,0,1,*,4,3,*

The corresponding query data point should be consistent with the evidence. For
example:

0,0,1,1,4,3,0

The above query and evidence can be used to find the conditional probability of
P (X4, X7|X1 = 0, X2 = 0, X3 = 1, X5 = 4, X6 = 3).

4.2 Graphical Models

Libra has custom file formats for BNs (.bn), DNs (.dn), and MNs (.mn) which
allows for very flexible factors, including trees, tables, and conjunctive features.
Model parameters are represented as log probabilities or unnormalized log potential
functions. See Figure 1 for an example of a complete .bn file.

The first line in the file is a comma-separated variable schema listing the range
of each variable. The next line specifies the model type (BN, DN, or MN). The
rest of the file defines the conditional probability distributions (CPDs) (for BNs and
DNs) or factors (for MNs), enclosed within braces ({}). Each CPD definition begins
with the name of the child variable (v1, v2, v3, etc.) followed by a set of factor
definitions enclosed in braces. MNs do not contain CPDs, and simply use the raw
factors.

Different factor types (table, tree, feature set) have different formats. The sim-
plest is a factor for a single feature, which is written out as a real-valued weight and
a list of variable conditions. For example the following line defines a feature with a
weight of 1.2 for the conjunction (X0 = 1) ∧ (X3 = 0) ∧ (X4 6= 2):

1.2 +v0_1 +v3_0 -v4_2

A feature set factor consists of a list of mutually exclusive features, each in the
format described above. The list is surrounded is preceded by the word “features”
and an opening brace (‘{’), and followed by a closing brace (‘}’). For example:

features {

-1.005034e-02 +v5_1 +v0_1

-2.302585e+00 +v5_0 +v0_1

-4.605170e+00 +v5_1 +v0_0

-1.053605e-01 +v5_0 +v0_0

}
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example.bn:

2,2,2

BN {

v0 {

table {

-7.60e+00 +v0_1

-5.00e-04 +v0_0

}

}

v1 {

tree {

(v0_0

(v1_0 -1.91e-02 -3.97e+00)

(v1_0 -5.32e-02 -2.96e+00))

}

}

v2 {

features {

1.5 +v0_0 +v1_0 +v2_0

2.5 +v0_1 +v1_1 +v2_1

}

}

}

Figure 1: Example .bn file showing three types of CPDs.

A table factor has the same format as a feature set, except with the word “table”
in place of the word “features”, and the features in the list need not be mutually
exclusive. After reading a table factor, Libra creates an internal tabular representa-
tion. The size of this table is exponential in the number of variables referenced by
the listed features.

The format of a tree factor is similar to a LISP s-expression, as illustrated in the
following example:

tree {

(v1_0

(v3_0

(v0_0

(v2_0 -1.905948e-02 -3.969694e+00)

(v2_0 -5.320354e-02 -2.960105e+00))
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(v2_0 -2.341261e-01 -1.566675e+00))

(v2_0 -2.121121e-01 -1.654822e+00))

}

When x1 = 0, x3 = 1, and x2 = 1, then the log value of this factor is -1.566675.
To indicate an infinite weight, write “inf” or -inf”.

4.3 Arithmetic Circuits

For arithmetic circuits, Libra uses a custom file format (.ac). The first line of a .ac

file specifies the range of each variable. For example, (2 2 2) indicates a domain
with three binary-valued variables. The following lines list the nodes in the network,
one per line. Each line specifies the node type and any of its parameters, such as the
value of a constant node, the variable and value index for an indicator variable node,
and the indices of child nodes for sum and product nodes. For example, n 0.9995

represents the constant value 0.9995, v 2 0 represents the indicator variable for the
first value of the third variable, and * 0 13 represents the product of the first and
fourteenth nodes. Each node must appear after all of its children. The root of the
circuit is therefore the last node, followed by the string EOF.

After defining all nodes, an arithmetic circuit file optionally describes how its
parameters relate to conjunctive features. For example, 1 0.981081 +v0_0 +v1_0

indicates that the second node in the circuit contains the parameter associated with
the conjunctive feature (X0 = 0) ∧ (X1 = 0). Libra uses this supplementary infor-
mation when converting circuits into Markov networks, optimizing their parameters,
or computing pseudo-likelihood.

See Figure 2 for a complete example. This circuit was generated from the BN in
Figure 1, using the command: libra acve -m example.bn -o example.ac. Note
that, unlike .bn and .mn files, all parameters in the circuit files are stored as raw
values, not log values.

4.4 Sum-Product Networks and Mixtures of Trees

Libra represents sum-product networks with a custom file format (.spn). Each .spn

file is a directory containing a model file spac.m and many .ac files. In the model
file, a node is represented as: n <nid> <type> <pid> where nid and pid are the
id of the node and its parent, respectively, and type can be +, *, or ac. For each
node with type ac, there is a corresponding file spac-nid.ac in the .spn directory.
Libra uses the same file format for mixtures of trees.

See Figure 3 for an example model file. This model contains seven nodes, repre-
senting a mixture of products of arithmetic circuits. The first two lines specify the
network name (spac) and the number of nodes (7). The first node (n 0 + -1) is a
sum node with no parent. The next line specifies its children, nodes 1 and 2. For
sum nodes, an additional line specifies the log mixture weight of each child. The
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example.ac:

(2 2 2)

v 1 0

n 0.981081

n 0.999500

v 0 0

* 2 3

n 4.481689

* 4 5

* 1 6

n 0.948190

n 0.000500

v 0 1

* 9 10

* 8 11

+ 7 12

* 0 13

v 1 1

n 0.018873

* 16 4

n 0.051819

* 18 11

+ 17 19

* 15 20

+ 14 21

v 2 0

* 22 23

* 1 4

+ 25 12

* 0 26

n 12.182494

* 11 28

* 18 29

+ 17 30

* 15 31

+ 27 32

v 2 1

* 33 34

+ 24 35

EOF

2 0.999500 +v0_0

9 0.000500 +v0_1

1 0.981081 +v0_0 +v1_0

8 0.948190 +v0_1 +v1_0

16 0.018873 +v0_0 +v1_1

18 0.051819 +v0_1 +v1_1

5 4.481689 +v0_0 +v1_0 +v2_0

28 12.182494 +v0_1 +v1_1 +v2_1

EOF

Figure 2: Example .ac file based on the BN from Figure 1. For compactness and
readability, the file listing has been split into two columns.

following line specifies that this first node is a probability distribution over all three
variables (0 1 2). The next two nodes are product nodes, each with two children,
and each representing a distribution over all three variables. Last are the ac nodes,
referencing the external files spac-1.ac through spac-4.ac. However, each of these
circuits is a probability distribution over a different subset of the domain variables:
the first is a distribution over variables 0 and 1, the second is over variable 2, the
third is over variables 1 and 2, and the last is over variable 0.

4.5 External File Formats

For interoperability with other toolkits, Libra supports several other file formats as
well. For Bayesian networks and dependency networks, Libra (mostly) supports two
previously defined file formats. The first is the Bayesian interchange format (BIF)
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spac.m:

spac

7

n 0 + -1

1 2

-1.204 -0.357

0 1 2

n 1 * 0

3 4

0 1 2

n 2 * 0

5 6

0 1 2

n 3 ac 1

0 1

n 4 ac 1

2

n 5 ac 2

1 2

n 6 ac 2

0

Figure 3: Example model file from a .spn directory. This represents a mixture of
products of arithmetic circuits.

for BNs and DNs with table CPDs.3 Note that this is different from the newer
XML-based XBIF format, which may be supported in the future.4 The second is
the WinMine Toolkit XMOD format, which supports both table and tree CPDs.5

Libra also supports the Markov network model file format used the by the UAI
inference competition6. However, Libra does not currently support the UAI evidence
or result file formats.

5 Common Options

Libra is designed to be run on the command line in a UNIX-like environment or
called by scripts in research or application workflows. No GUI environment is pro-
vided. A list of options for any command can be produced by running it with no

3BIF is described here: http://www.cs.cmu.edu/~fgcozman/Research/InterchangeFormat/

Old/xmlbif02.html.
4Scripts to translate between BIF and XBIF are available here: http://ssli.ee.washington.

edu/~bilmes/uai06InferenceEvaluation/uai06-repository/scripts/.
5The WinMine Toolkit also provides a visualization tool for XMOD files, DNetBrowser.exe.
6The UAI inference file format is described here: http://www.cs.huji.ac.il/project/UAI10/

fileFormat.php.
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arguments, or by running it with a -help or --help argument.
The following output options are valid with every command:

-log <file>: Output logging information to the specified file

-v: Enable verbose logging output. Verbose output always lists the full com-
mand line arguments, and often includes additional timing information.

-debug: Enable both verbose and debugging logging output. Debugging out-
put varies from program to program and is subject to change.

Option names for the following common options are mostly standardized among
the Libra commands that use them:

-i <file>: Train or test data

-m <file>: Model file

-o <file>: Output model or data

-seed <int>: Seed for the random number generator

-q <file>: Query file

-ev <file>: Query evidence file

-mo <file>: File for writing marginals or MPE states

-sameev: If specified, use the first line in the evidence file as the evidence for
all queries.

The last four options are exclusive to inference algorithms. Inference methods
that compute probabilities print out the conditional log probability of each query
given the evidence (optional). If no query is specified, the marginal distribution of
each non-evidence variable is printed out instead. Methods that compute the most
probable explanation (MPE) state print out the Hamming loss between the true
and inferred states divided by the number of non-evidence variables. If no query file
is specified, then MPE methods print out the MPE state for each evidence.

6 Learning Methods

6.1 cl: Chow-Liu Algorithm

Options:
-i Training data file
-s Data schema (optional)
-o Output Bayesian network
-prior Prior counts of uniform distribution
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The Chow-Liu algorithm (cl) [5] learns the maximum likelihood tree-structured
BN from data. The algorithm works by first computing the mutual information
between each pair of variables and then greedily adding the edge with highest mutual
information (excluding edges that would form cycles) until a spanning tree is formed.
(For sparse data, faster implementations are possible [16].) The option -prior

determines the prior counts used for smoothing.

libra cl -i msweb.data -s msweb.schema -o msweb-cl.bn -prior 1.0

6.2 bnlearn: Learning Bayesian Networks

Options:
-i Training data file
-s Data schema (optional)
-o Output Bayesian network (XMOD or BN format)
-prior Prior counts of uniform distribution
-parents Restrictions on variable parents
-ps Per-split penalty [-1.0]
-kappa Alternate per-split penalty specification [0.0]
-psthresh Output models for various per-split penalty thresholds [false]
-maxs Maximum number of splits [1000000000]

The bnlearn command learns a BN with decision-tree CPDs (see [4]). In order to
avoid overfitting, bnlearn uses a per-split penalty for early stopping (-ps), similar
to the penalty on the number of parameters used by Chickering et al. [4]. The
-kappa option is equivalent to a setting a per-split penalty of log kappa. With the
-psthresh option, bnlearn will output models for different values of -ps as learning
progresses, without needing to rerun training.

libra bnlearn -i msweb.data -o msweb.xmod -prior 1.0 -psthresh

An allowed parents file may be specified (-parents <file>), which restricts the
sets of parents structure learning is allowed to choose for each variable. Restrictions
can limit the parents to a specific set of parents (“none except 1 2 8 10”) or to
any parent not in a list (“all except 3 5”). An example parent file is below:

# This is a comment

0: all except 1 3 # var 0 may not have var 1 or 3 as a parent

1: none except 5 2 # only vars 5 and 2 may be parents of var 1

2: none # var 2 may have no parents

5: all # var 5 may have any parents
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6.3 acbn: Learning Tractable BNs with ACs

Options:
-i Training data file
-s Data schema (optional)
-o Output circuit
-mo Output Bayesian network (XMOD or BN format)
-prior Prior counts of uniform distribution [1]
-parents Restrictions on variable parents
-pe Per-edge penalty [0.1]
-shrink Shrink edge cost before halting [false]
-ps Per-split penalty [-1.0]
-kappa Alternate per-split penalty specification [0.0]
-psthresh Output models for various per-split penalty thresholds [false]
-maxe Maximum number of edges [1000000000]
-maxs Maximum number of splits [1000000000]
-quick ‘Quick and dirty’ heuristic [false]
-qgreedy Find greedy local optimum after quick heuristic [false]
-freq Number of iterations between saving current circuit [-1]

LearnAC (acbn) [11] learns a BN with decision-tree CPDs using the size of
the corresponding AC as a learning bias. This effectively trades off accuracy and
inference complexity, guaranteeing that the final model will support efficient, exact
inference. acbn outputs both an AC (specified with -o) and a BN (specified with
-mo). It uses the same BN learning as bnlearn as well as some additional options
that are specific to learning an AC.

The LearnAC algorithm penalizes the log-likelihood with the number of edges in
AC, which relates to the complexity of inference. The option -pe specifies the per-
edge penalty for acbn. When the per-edge penalty is higher, acbn will more strongly
prefer structures with few edges. The per-split penalty is for early stopping, in order
to avoid overfitting.

libra acbn -i msweb.data -o msweb.ac -mo msweb-bn.xmod -ps 1 -pe 0.1

We can also bound the size of the AC to a certain number of edges using the
-maxe option. The combination of -maxe 100000 -shrink specifies the maximum
number of edges (100,000, in this case) and tells acbn to keep running until this
edge limit is met, reducing the per-edge cost as necessary. This way, we can start
with a conservative edge cost (such as 100), select only the most promising simple
structures, and make compromises later as our edge budget allows. A final option is
-quick, which relaxes the default, greedy heuristic to be only approximately greedy.
In practice, it is often an order of magnitude faster with only slightly worse accuracy.

Algorithms that learn ACs, such as acbn, can be much slower than those that
only learn graphical models, such as bnlearn. The reason is that acbn is also
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learning a complex inference representation, and manipulating that representation
can be relatively expensive.

For good results in a reasonable amount of time, we recommend using -quick,
-maxe, and -shrink:

libra acbn -i msweb.data -o msweb.ac -mo msweb-bn2.bn -quick

-maxe 100000 -shrink

6.4 acmn: Learning Tractable MNs with ACs

Options:
-i Training data file
-s Data schema (optional)
-o Output circuit
-mo Output Markov network
-sd Standard deviation of Gaussian weight prior [1.0]
-l1 Weight of L1 norm [0.0]
-pe Per-edge penalty [0.1]
-sloppy Score tolerance heuristic [0.01]
-shrink Shrink edge cost before halting [false]
-ps Per-split penalty [-1.0]
-psthresh Output models for various per-split penalty thresholds [false]
-maxe Maximum number of edges [1000000000]
-maxs Maximum number of splits [1000000000]
-quick ‘Quick and dirty’ heuristic [false]
-halfsplit Produce only one child feature in each split [false]
-freq Number of iterations between saving current circuit [-1]

The ACMN algorithm [13], acmn, learns a tractable Markov network. ACMN
outputs an AC augmented with Markov network features and weights. The -mo

option specifies a second output file for the learned MN structure. ACMN supports
both L1 (-l1) and L2 (-sd) regularization to avoid overfitting parameters. Like
acbn, ACMN uses per-split and per-edge penalties. See Section 6.3 and Section 6.2
for common options: -ps, -pe, -psthresh, -maxe, -maxs, -shrink, -quick.

libra acmn -i msweb.data -s msweb.schema -o msweb-mn.ac -l1 5

-sd 0.1 -maxe 100000 -shrink -ps 5 -mo msweb.mn

Currently, Libra’s implementation of acmn only supports binary-valued variables.
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6.5 idspn: Learning Sum-Product Networks

Options:
-i Training data file
-s Data schema (optional)
-o Output SPN directory
-l1 Weight of L1 norm [5.0]
-l EM clustering penalty [0.2]
-ps Per-split penalty [10.0]
-k Max sum nodes’ cardinalities [5]
-sd Standard deviation of Gaussian weight prior [1.0]
-cp Number of concurrent processes [4]
-vth Vertical cut thresh [0.001]
-ext Maximum number of node extensions [5]
-minl1 Minimum value for components’ L1 priors [1.0]
-minedge Minimum edge budget for components [200000]
-minps Minimum split penalty for components [2.0]
-seed Random seed
-f Force to override output SPN directory

ID-SPN (idspn) [20] learns sum-product networks (SPNs) using direct and in-
direct variable interactions. The ouput is in the .spn format, which is a directory
containing .ac files for AC nodes and a model file spac.m that holds the structure
of the SPN. We can convert the .spn directory to an .ac file using spn2ac.

ID-SPN calls acmn to learn the AC nodes, so acmn must be in the path. The
behavior of acmn can be adjusted using the -l1, -ps, and -sd options. We can
control the number of times that ID-SPN tries to expand an AC node by using the
-ext option. Setting this parameter to a large number will lead to longer learning
times and possibly overfitting. ID-SPN adjusts the parameters of acmn based on
the number of variables and samples it uses for learning an AC node. We can set
a minimum for these options using -minl1, -minedge, and -minps, which helps
control overfitting. ID-SPN uses clustering for learning sum nodes. We can control
the number of clusters by adjusting the prior over the number of clusters (-l) or
by setting the maximum number of clusters (-k). To learn product nodes, ID-SPN
uses a cut threshold (-vth), and it supposes that two variables are independent if
their mutual information value is less than that threshold. When running ID-SPN
on a multicore machine, we can increase the number of concurrent processes using
the -cp option to reduce the learning time.

libra idspn -i msweb.data -o msweb.spn -k 10 -ext 5 -l 0.2

-vth 0.001 -ps 20 -l1 20

(This example will take a long time to run.)
Libra’s current implementation of idspn only supports binary-valued variables.
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6.6 mtlearn: Learning Mixtures of Trees

Options:
-i Training data file
-s Data schema (optional)
-o Output SPN directory
-k Number of component [4]
-seed Random seed
-f Force to override output SPN directory

Libra supports learning mixtures of trees (mtlearn) [17]. A mixture of trees
can be viewed as a sum node and many AC nodes, in which every AC represents
a Chow-Liu tree [5]. Therefore, mtlearn’s output has the same format as idspn,
.spn. We can convert the .spn directory to an .ac file using the spn2ac command.

For mtlearn, the option -k determines the number of trees. The performance of
mtlearn can be sensitive to the random initialization, so it may take several runs to
get good results. The seed for the random generator can be specified using -seed

in order to enable repeatable experiments.

libra mtlearn -i msweb.data -s msweb.schema -o msweb-mt.spn -k 10 -v

(This example will take several minutes to run.)

6.7 dnlearn: DN Structure Learning

Options:
-i Training data file
-s Data schema (optional)
-o Output dependency network
-ps Per-split penalty [0.0]
-kappa Alternate per-split penalty specification [0.0]
-prior Prior counts of uniform distribution [1.0]
-tree Use decision tree CPDs [default]
-mincount Minimum number of examples at each decision tree leaf [10]
-logistic Use logistic regression CPDs [false]
-l1 Weight of L1 norm for logistic regression [0.1]

A dependency network (DN) specifies a conditional probability distribution for
each variable given its parents. However, unlike a BN, the graph of parent-child
relationships may contain cycles. With Libra, we can learn a dependency network
with tree-structured conditional probability distributions using dnlearn:

libra dnlearn -i msweb.data -s msweb.schema -o msweb-dn.dn -prior 1

The algorithm is similar to that of Heckerman et al. [8]. As with bnlearn, the
user can set the prior counts on the multinomial leaf distributions (-prior) as well
as a per-split penalty (-ps) to prevent overfitting.
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If all variables are binary-valued, logistic regression CPDs can be used instead
(-logistic). To obtain sparsity, tune the L1 regularization parameter with the -l1
option.

libra dnlearn -i msweb.data -s msweb.schema -o msweb-dn-l1.dn

-logistic -l1 2

6.8 dnboost: DN Structure Learning with Logitboost

Options:
-i Training data file
-valid Validation data
-s Data schema (optional)
-o Output dependency network
-numtrees Number of trees per CPD
-numleaves Number of leaves per tree
-nu Shrinkage [0-1] (0 => line search)
-mincount Minimum number of examples at each decision tree leaf [10]

Dependency networks with boosted decision trees as the conditional model can
be learned with dnboost. The boosting method is based on the logitboost algo-
rithm [7]. Important parameters include the number of trees to learn for each con-
ditional distribution (-numtrees), the number of leaves for each tree (-numleaves),
and shrinkage (-shrinkage). To use validation data for early stopping, specify the
file with -valid.

In our limited experience, boosted decision trees usually work worse than single
decision trees or logistic regression CPDs.

6.9 dn2mn: Learning MNs from DNs

Options:
-m Model file (DN)
-o Output Markov network
-i Input data
-base Average over base instances from data
-bcounts Average over base instances from data, using cached counts
-marg Average over all instances, weighted by data marginals [default]
-order Variable order file
-rev Add reverse orders, for symmetry [default]
-norev Do not add reverse orders
-single Average over given orders
-linear Average over all rotations of all orders [default]
-all Average over all possible orderings
-maxlen Max feature length for -linear or -all [default: unlimited]
-uniq Combine weights for duplicate features (may be slower)
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The DN2MN algorithm (dn2mn) [15] converts a DN into an MN representing
a similar distribution. The advantage of DNs is that they are easier to learn; the
advantage of MNs is clearer semantics and more inference algorithms. DN2MN
allows a learned DN to be converted to an MN for inference, giving the best of both
worlds. For consistent DNs, this conversion is exact. If the CPDs are inconsistent
with each other, as is typical for learned DNs, then the resulting MN will not
represent the exact same distribution. The approximation is often improved by
averaging over multiple orderings or base instances (see [15] for more details).

For averaging over multiple base instances, use -i to specify a set of input
examples, which are either used to learn the marginal distribution over the base
instances (-marg) or used as the base instances directly (-base or -bcounts). The
default variable order is (1, 2, . . . , n). To specify a different order or set of orders
from a file, use -order. To add in reverse orders, use -rev. To add in rotations over
all orderings (e.g., (2, 3, . . . , n, 1)), use -linear. To sum over all possible orderings,
use -all. To obtain faster performance and smaller models, use -maxlen to restrict
the use of -all or -linear to short features. Longer features are then handled with
more efficient methods (-linear instead of -all or -single instead of -linear).

Default options are -marg, -rev, and -linear, which typically provides a com-
pact and robust approximation, especially when given representative data with -i:

libra dn2mn -m msweb-dn.dn -o msweb-dn.mn -i msweb.data

To sum over a single order instead, use -base, -norev, and -single. The conver-
sion process often leads to many duplicate features. To merge these automatically,
use -uniq. This may lead to slower performance.

Another method for learning an MN from a DN is to run mnlearnw, which, when
given a DN model with -m, uses the DN features but relearns the parameters from
data.

6.10 mnlearnw: MN Weight Learning

Options:
-m Input Markov network structure
-i Training data
-o Output model
-maxiter Maximum number of optimization iterations [100]
-sd Standard deviation of Gaussian weight prior [1.0] (¡ 0 = inf)
-l1 Weight of L1 norm [0.0]
-clib Use C implementation for speed [true]
-noclib Use OCaml implementation
-cache Enable feature cache (much faster, but more memory) [true]
-nocache Disable feature cache
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MN weight learning (mnlearnw) selects weights to minimize the penalized pseudo-
likelihood of the training data. Both L1 and L2 penalties are supported. The weight
of the L1 norm can be set using -l1 and the standard deviation of the L2 prior can
be set using -sd. Optimization is performed using the L-BFGS [10] or OWL-QN [1]
algorithm. To achieve the best performance for most applications, the internal opti-
mization is implemented in C and caches all features relevant to each example. These
optimizations can be disabled with -noclib and -nocache, respectively. Learning
terminates when the optimization converges or when the maximum iteration number
is reached (-maxiter).

6.11 acopt: AC Parameter Learning

Options:
-m Arithmetic circuit to optimize
-o Output circuit
-ma Model to approximate (BN or MN)
-i Empirical distribution to approximate
-gibbs Approximate sampled empirical distribution [false]
-gspeed Number of samples (fast/medium/slow/slower/slowest)
-gc Number of MCMC chains
-gb Number of burn iterations
-gs Number sampling iterations
-gdn Sample from CPD instead of Markov blanket
-norb Disable Rao-Blackwellization
-seed Random seed
-ev Evidence file
-init Initial variable marginals
-maxiter Maximum number of optimization iterations [100]

AC parameters can be learned or otherwise optimized using acopt. Given train-
ing data (-i <file>), acopt finds parameters that maximize the log-likelihood of the
training data. This works for any AC that represents a log linear model, including
BNs and MNs. Our implementation uses L-BFGS [10], a standard convex optimiza-
tion method. The gradient of the log-likelihood is computed in each iteration by
differentiating the circuit, which is linear in circuit size. Since this is a convex prob-
lem, the parameters will eventually converge to their optimal values. The maximum
number of iterations can be specified using -maxiter.

Given a BN or MN to approximate (-ma) and, optionally, evidence (-ev), acopt
supports two other kinds of parameter optimization.

The first is to minimize the KL divergence between the given BN or MN (option-
ally conditioned on evidence) and the AC (i.e., DKL(AC||BN)). This is similar to
mean field inference, except that an AC is used in place of a fully factored distribu-
tion, and the optimization is performed using L-BFGS instead of message passing.
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The second type of optimization (-gibbs) approximately minimizes the KL di-
vergence in the other direction, DKL(BN||AC) or DKL(MN||AC), by generating
samples from the BN or MN (optionally conditioned on evidence) and selecting AC
parameters to maximize their likelihood. Samples are generated using Gibbs sam-
pling, with parameters analogous to those for the gibbs command (Section 7.7). The
most important options are -gspeed or -gc/-gb/-gs to set the number of samples.
Increasing the number of samples yields a better approximation but takes longer
to run. This is similar to running gibbs, saving the samples using -so, and then
running acopt with -i, as described above. However, acopt -gibbs is faster since
it only needs to compute the sufficient statistics instead of storing and reloading the
entire set of samples.

The main application of acopt is for for performing approximate inference using
ACs, as described by [12]. This can be done by generating samples from a BN
(bnsample), learning an AC from the samples (acbn), and then optimizing the AC’s
parameters for specific evidence (acopt) (see [12]).

7 Inference Methods

7.1 acve: AC Variable Elimination

Options:
-m Model file (BN or MN)
-o Output circuit

AC variable elimination (acve) [3] compiles a BN or MN by simulating variable
elimination and encoding the addition and multiplication operations into an AC:

libra acve -m msweb-cl.xmod -o msweb-cl.ac

ACVE represents the original and intermediate factors as algebraic decision dia-
grams (ADDs) with AC nodes at the leaves. As each variable is summed out, the
leaves of the ADDs are replaced with new sum and product nodes. By producing an
AC, ACVE builds a representation that can answer many different queries. By using
ADDs, ACVE can exploit context-specific independence much better than previous
methods based on variable elimination. See Chavira and Darwiche [3] for details.

The one difference between Libra’s implementation and the standard algorithm
is that its ADDs allow k-way splits for variables with k values. In the standard
algorithm, k-valued variables are converted into k Boolean variables, along with
constraints to ensure that exactly one of these variables is true at a time. We also
omit the circuit node cache, which we find has little effect on circuit size at the cost
of significantly slowing compilation.

If no output file is specified, then acve does not create a circuit but simply sums
out all variables and prints out the value of the log partition function (logZ). To
compute conditional probabilities without creating an AC, use mconvert -ev to
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condition the model on different evidence and acve to compute the log partition
functions of the conditioned models. The log probability of a query (logP (q|e)) is
the difference between the log partition function of the model conditioned on query
and evidence (logZq,e) and the model conditioned only on evidence (logZe).

7.2 acquery: Exact AC Inference

Options:
-m Input arithmetic circuit
-ev Evidence file
-q Query file
-sameev Use the same evidence for all queries
-preprune Prune circuit for the evidence
-marg Use conditional marginals instead of joint distribution
-mpe Compute most probable explanation (MPE) state
-mo Output file for marginals or MPE

Exact inference in ACs is done through acquery, which accepts similar argu-
ments to the approximate inference algorithms. See Darwiche [6] for a thorough
description of ACs and how to use them for inference. We provide a brief descrip-
tion of the methods below.

To compute the probability of a conjunctive query, we set all indicator variables
in the AC to zero if they are inconsistent with the query and to one if they are
consistent. For instance, to compute P (X1 = true ∧ X3 = false), we would set
the indicator variables for X1 = false and X3 = true to zero and all others to
one. Evaluating the root of the circuit gives the probability of the input query.
Conditional probabilities are answered by taking the ratio of two unconditioned
probabilities:

P (Q|E) =
P (Q ∧ E)

P (E)

where Q and E are conjunctions of query and evidence variables, respectively. Both
P (Q ∧ E) and P (E) can be computed using previously discussed methods. Evalu-
ating the circuit is linear in the size of the circuit.

We can also differentiate the circuit to compute all marginals in parallel (-marg),
optionally conditioned on evidence. Differentiating the circuit consists of an upward
pass and a downward pass, each of which is linear in the size of the circuit. See
Darwiche [6] for more details.

In addition, we can compute the most probable explanation (MPE) state (-mpe),
which is the most likely configuration of the non-evidence variables given the evi-
dence. When the MPE state is not unique, acquery selects one of the MPE states
arbitrarily.

We can also use acquery to compute the probabilities of configurations of mul-
tiple variables, such as the probability that variables two through five all equal 0.
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To do this, we need to create a query file that defines every configuration we’re
interested in. The format is identical to Libra data files, except that we use “*” in
place of an actual value for variables whose values are unspecified. msweb.q contains
three example queries.

libra acquery -m msweb-cl.ac -q msweb.q

acquery outputs the log probability of each query as well as the average over all
queries and its standard deviation. With the -v flag, acquery will print out query
times in a second column.

An evidence file can be specified as well using -ev, using the same format as the
query file:

libra acquery -m msweb-cl.ac -q msweb.q -ev msweb.ev -v

Evidence can also be used when computing marginals. If you specify both -q

and -marg, then the probability of each query will be computed as the product of
the marginals computed. This is typically less accurate, since it ignores correlations
among the query variables.

To obtain the most likely variable state (possibly conditioned on evidence), use
the -mpe flag:

libra acquery -m msweb-cl.ac -ev msweb.ev -mpe

This computes the most probable explanation (MPE) state for each evidence config-
uration. If the MPE state is not unique, acquery will select one arbitrarily. If you
specify a query with -q, then acquery will print out the fraction of query variables
that differ from the predicted MPE state:

libra acquery -m msweb-cl.ac -q msweb.q -ev msweb.ev -mpe

7.3 spquery: Exact Inference in Sum-Product Networks

Options:
-m Input SPN (SPAC) model directory
-ev Evidence file
-q Query file

For models represented in the .spn format, we can use spquery to find the log
probability of queries or the conditional log probability of queries given evidence:

libra spquery -m msweb-mt.spn -q msqweb.q -ev msweb.ev

For more complex queries, such as computing the most probable explanation
(MPE) state or marginals, you must first use spn2ac to convert the .spn file to the
.ac format and then use acquery, Section 7.2.
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7.4 mf: Mean Field

Options:
-m Model file (BN, MN, or DN)
-mo Output file for marginals
-ev Evidence file
-sameev Use the same evidence for all queries
-q Query file
-maxiter Maximum number of iterations [50]
-thresh Convergence threshold [0.0001]
-depnet Interpret factors as CPDs in a cyclical dependency network
-roundrobin Update marginals in order instead of skipping unchanged vars

Mean field (mf) is an approximate inference algorithm that attempts to minimize
the KL divergence between the specified MN or BN (possibly conditioned on evi-
dence) and a fully factored distribution (i.e., a product of single-variable marginals):

libra mf -m msweb-cl.bn

libra mf -m msweb-cl.bn -q msweb.q

libra mf -m msweb-cl.bn -q msweb.q -ev msweb.ev -v

Note that there is no -marg option, since mean field always approximates the dis-
tribution as a product of marginals.

Libra’s implementation updates one marginal at a time until all marginals have
converged, using a queue to keep track of which marginals may need to be updated
(see Algorithm 11.7 from [9]). With the -roundrobin flag, Libra will instead update
all marginals in order. The stopping criteria can be adjusted using the parameters
-thresh (convergence threshold) or -maxiter (maximum number of iterations).
Rather than working directly with table or tree CPDs, mf converts both to a set
of features and works directly with the log-linear representation, ensuring that the
compactness of tree CPDs is fully exploited.

Libra’s implementation is the first to support mean field inference in DNs, using
the -depnet option. Since a DN may not represent a consistent probability distribu-
tion, the mean field objective is undefined. However, the message-passing updates
can still be applied to DNs and they tend to converge in practice [14].
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7.5 bp: Loopy Belief Propagation

Options:
-m Model file (BN or MN)
-mo Output file for marginals
-ev Evidence file
-sameev Use the same evidence for all queries
-q Query file
-maxiter Maximum number of iterations [50]
-thresh Convergence threshold [0.0001]

Loopy belief propagation (bp) is the application of an exact inference algorithm
for trees to general graphs that may have loops:

libra bp -m msweb-cl.bn -q msweb.q -ev msweb.ev -v

libra bp -m msweb-cl.bn -q msweb.q -ev msweb.ev -sameev -v

The -sameev option in the second command runs BP only once with the first ev-
idence configuration in msweb.ev, and then reuses the marginals for answering all
queries in msweb.q.

bp is implemented on a factor graph, in which variables pass messages to factors
and factors pass messages back to variables in each iteration. All factor-to-variable
or variable-to-factor messages are passed in parallel, a message passing schedule
known as “flooding.” For BNs, each factor is a CPD for one of the variables. For
factors represented as trees or sets of features, the running time of a single message
update is linear in the number of leaves or features, respectively. This allows bp

to run on networks with factors that involve 100 or more variables, as long as the
representation is compact.

7.6 maxprod: Max-Product

Options:
-m Model file (BN or MN)
-mo Output file for MPE states
-ev Evidence file
-sameev Use the same evidence for all queries
-q Query file
-maxiter Maximum number of iterations [50]
-thresh Convergence threshold [0.0001]

The max-product algorithm (maxprod) is an approximate inference algorithm
to find the most probable explanation (MPE) state, the most likely configuration
of the non-evidence variables given the evidence. Like bp, max-product is an exact
inference algorithm in tree-structured networks, but may be incorrect in graphs with
loops. Max-product is implemented identically to bp, but replacing sum operations
with max.
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Examples:

libra maxprod -m msweb-cl.bn -ev msweb.ev -mo msweb-cl.mpe

libra maxprod -m msweb-bn.bn -q msweb.q -ev msweb.ev -v

7.7 gibbs: Gibbs Sampling

Options:
-m Model file (BN, MN, or DN)
-depnet Sample from CPD only, not Markov blanket
-mo Output file for marginals
-so Output file for samples
-marg Compute marginals
-ev Evidence file
-sameev Use the same evidence for all queries
-q Query file
-speed Number of samples (fast/medium/slow/slower/slowest)
-chains Number of MCMC chains
-burnin Number of burn-in iterations
-sampling Number sampling iterations
-norb Disable Rao-Blackwellization
-prior Total prior counts
-seed Random seed

Gibbs sampling (gibbs) is an instance of Markov-chain Monte Carlo (MCMC)
that generates samples by resampling a single variable at a time conditioned on its
Markov blanket. The probability of any query can be computed by counting the
fraction of samples that satisfy the query. When evidence is specified, the values of
the evidence variables are fixed and never resampled. By default, Libra’s implemen-
tation computes the probabilities of conjunctive queries (e.g., P (X1∧X2∧¬X4)) or
marginal queries (e.g., P (X1)), optionally conditioned on evidence. This is poten-
tially more powerful than MF and BP, which only compute marginal probabilities.
To compute only marginal probabilities with Gibbs sampling, use the -marg option.
This is helpful when the specific queries are very rare (such as long conjunctions) but
can be approximated well as the product of the individual marginal probabilities.

The running time of Gibbs sampling depends on the number of samples taken.
Use -burnin to set the number of burn-in iterations (sampling steps thrown away be-
fore counting the samples); use -sampling to set the number of sampling iterations;
and use -chains to set the number of repeated sampling runs. For convenience,
these parameters can also be set using the -speed option which allows arguments
of fast, medium, slow, slower, and slowest, which range from 1000 to 10 million
total sampling iterations. All speeds except for fast use 10 chains and a number of
burn-in iterations equal to 10% of the sampling iterations. Samples can be output
to a file using the -so option.
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By default, Libra uses Rao-Blackwellization to make the probabilities slightly
more accurate. This adds fractional counts to multiple states by examining the
distribution of the variable to be resampled. For instance, suppose the sampler is
computing the marginal distribution P (X3), and that the probability of X3 = true
is 0.001, given the current state of its Markov blanket. A standard Gibbs sampler
adds 1 to the count of the next sampled state and 0 to the other. In contrast, Libra’s
Rao-Blackwellized sampler adds 0.001 to the counts for X3 being true and 0.999 to
the counts for X3 being false. This applies both to computing conjunctive queries
and marginals. It can be disabled with the flag -norb.

gibbs can answer queries using either the full joint distribution (the default)
or just the marginals (with -marg). The latter option is helpful for estimating the
probabilities of rare events that may never show up in the samples.

To print the raw samples to a file, use -so. To obtain repeatable experiments,
use -seed to specify a random seed.

Examples:

libra gibbs -m msweb-bn.bn -mo msweb-gibbs.marg

libra gibbs -m msweb-bn.bn -q msweb.q -ev msweb.ev -v

libra gibbs -m msweb-bn.bn -q msweb.q -ev msweb.ev -speed medium -v

libra gibbs -m msweb-bn.bn -q msweb.q -ev msweb.ev -marg -sameev

Gibbs sampling can be run on a BN, MN, or DN. To force a .xmod or .bif file
to be treated as a DN when sampling, use the -depnet flag.

7.8 icm: Iterated Conditional Modes

Options:
-m Model file (BN, MN, or DN)
-mo Output file for MPE states
-depnet Treat BN as a DN when computing conditional probabilities
-ev Evidence file
-sameev Use the same evidence for all queries
-q Query file
-restarts Number of random restarts [1]
-maxiter Maximum number of iterations [-1]
-seed Random seed

Iterated conditional modes (icm) [2] is a simple hill-climbing algorithm for MPE
inference. Starting from a random initial state, it sets each variable in turn to its
most likely state given its Markov blanket, until it reaches a local optimum. Multiple
random restarts can lead to better optima. In an inconsistent DN, the algorithm is
not guaranteed to terminate.

libra icm -m msweb-bn.bn -ev msweb.ev
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8 Utilities

8.1 mscore: Model Scoring

Options:
-m Input model (BN, MN, DN, or AC)
-depnet Score model as a DN, using pseudo-log-likelihood
-i Test data file
-pll Compute pseudo-log-likelihood
-pervar Give MN PLL or BN LL for each variable separately.
-clib Use C library for computing PLL
-noclib Use only OCaml code for computing PLL

The command mscore computes the log-likelihood of a set of examples for BNs
or ACs. For MNs, mscore can be used to compute the unnormalized log-likelihood,
which will differ from the true log-likelihood by log Z, the log partition function of
the MN. Using the -pll flag, mscore will compute the pseudo-log-likelihood (PLL)
of a set of examples instead. For DNs, mscore always computes the PLL. With
-pervar, mscore provides the log-likelihood or PLL for each variable separately.

8.2 bnsample: BN Forward Sampling

Options:
-m Model file (BN)
-o Output file
-n Number of samples to generate [1000]
-seed Random seed

The command bnsample can be used to generate a set of independent samples
from a BN using forward sampling. Each variable is sampled given its parents, in
topological order. Use -n to indicate the number of samples and -seed to choose a
random seed.

8.3 mconvert: Model Format Conversion

Options:
-m Input model file (BN, MN, or AC)
-o Output model file
-ev Evidence file
-feat Convert MN factors to features
-dn Convert factors to conditional distributions, producing a DN

The command mconvert performs conversions among the AC, BN, DN, and
MN file formats, and conditions models on evidence (-ev). ACs can be converted to
ACs or MNs; BNs can be converted to BNs, MNs, or DNs; MNs can be converted
to MNs or DNs; and DNs can be converted to DNs or MNs. Converting from a
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DN to an MN will keep the same set of features but not the same distribution; to
maintain (approximately) the same distribution, use the dn2mn algorithm instead.
If an evidence file is specified (using -ev), then the output model must be an AC
or MN. Conditioning on evidence “reduces” the model by removing portions of the
model that are inconsistent with the evidence. If the -feat option is specified, then
each factor will be a set of features. The -dn option converts the factors of a BN or
MN to a set of conditional probability distributions, one for each variable given its
Markov blanket.

8.4 spn2ac: SPN to AC Conversion

Options:
-m Input SPN (SPAC) model directory
-o Output arithmetic circuit

The command spn2ac takes a sum-product network .spn and converts it to an
equivalent arithmetic file.

8.5 fstats: File Information

Options:
-i Input file (BN, MN, DN, AC, or data)

fstats gives basic information for files of most types supported by Libra.
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