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1 Introduction

A number of graphical model toolkits have been developed over the years, quite a few of which are
open source. Libra is the first open source machine learning toolkit to directly support Bayesian
networks (BNs) with decision tree conditional probability distributions (CPDs), Markov networks
(MNs) with sparse factors, and arithmetic circuits (ACs) as an inference representation.! Libra
stands for Learning and Inference in Bayesian networks, Random fields and Arithmetic circuits.
In version 0.4.0, Libra also supports dependency networks. Libra’s strength is exploiting context-
specific independence to allow exact inference in models with high treewidth. The latest version of
Libra can be obtained from http://libra.cs.uoregon.edu/. Libra is released under a modified
BSD license.

This user manual gives a brief overview of Libra’s functionality, describes the file formats used,
and explains the operation of each command in the toolkit. See the tutorial for a step-by-step
introduction to using Libra, and the developer’s guide for information on modifying and extending
Libra.

2 Algorithms

Libra includes implementations of various algorithms for learning and inference with different rep-
resentations. Representations include Bayesian networks (BNs) with tree or table conditional prob-
ability distributions (CPDs); Markov networks (MNs) with factors represented as trees, tables, or
sets of (mutually exclusive) conjunctive features; and dependency networks (DNs) with tree or
table CPDs.

The following inference algorithms are supported for BNs, MNs, and DNs:

e Mean field inference (mf) [11]

e Gibbs sampling (gibbs)

For BNs and MNs, three more inference algorithms are supported:
e Belief propagation (bp) [13]

e Max-product (maxprod)

'The WinMine Toolkit [3] and Ace (http://reasoning.cs.ucla.edu/ace/) were partial inspirations for Libra and
offer some overlapping functionality, but neither is open source.



e AC variable elimination (acve) [1]

The last method compiles a BN or MN into an arithmetic circuit in which exact inference is efficient.
We also support the following learning methods:

e Chow-Liu algorithm (c1) [4]

e Dependency network learning (dnlearn) [6]

e Learning BNs with local structure (aclearnstruct) [2]
e LearnAC (aclearnstruct) [9]

LearnAC learns a BN with decision-tree CPDs using the size of the corresponding AC as a learning
bias. This effectively trades off accuracy and inference complexity. It outputs both a BN and an
AC. This is the most complex algorithm in the toolkit by far.

Finally, for models that are represented as arithmetic circuits, we support:

e Exact inference (acquery)

e Maximum likelihood parameter learning (acopt)

A few utility programs round out the toolkit:

e BN forward sampling (bnsample)

e Likelihood or psuedo-likelihood model scoring (mscore)

e Model conversion and conditioning on evidence (mconvert)
e File info, for any supported file type (fstats)

Existing functionality is organized around the central theme of using ACs for learning and
inference, and comparing them to baseline BN and MN methods.

3 File Formats

For data points, Libra uses comma-separated lists of variable values, with asterisks representing
values that are unknown. This allows the same format to be used for training examples and
evidence configurations. Each data point is terminated by a newline. In some programs (mscore
and aclearn), each data point may be preceded by an optional weight, in order to learn or score
a weighted set of examples. The default weight is 1.0. The following are all valid data points:

0,0,1,0,4,3,0
0.2/0,0,1,1,2,0,1
10001/0,0,0,0,0,0,0

For arithmetic circuits, Libra uses a custom file format (.ac) that lists the dimension of each
variable in the first line of the file, followed by the nodes in the network, one per line. Each line
specifies the node type and any of its parameters, such as the value of a constant node, the variable
and value index for an indicator variable node, and the indices of child nodes for sum and product



nodes. Each node must appear before all of its parents. The root of the circuit is therefore the last
node. After defining all nodes, an arithmetic circuit file optionally describes how its parameters
relate to conjunctive features.

For Bayesian networks and dependency networks, Libra (mostly) supports two previously de-
fined file formats. The first is the Bayesian interchange format (BIF) for BNs and DNs with
table CPDs.? Note that this is different from the newer XML-based XBIF format, which may be
supported in the future.?

The second is the WinMine Toolkit XMOD format, which supports both table and tree CPDs.*
The advantage of tree CPDs over tables is that they can easily express context-specific independen-
cies, and allow more compact CPDs for nodes with many parents. Support for tree CPDs is one
key advantage of Libra over other BN toolkits.

For Markov networks, Libra defines a custom format. The first line is a comma-separated
variable schema. Following are the factor definitions. Different factor types (table, tree, feature
set) have different formats. The simplest is a factor for a single features, which is written out as a
real-valued weight and a list of variable conditions. For example the following line defines a feature
with a weight of 1.2 for the conjunction (Xg=1) A (X3 =0) A (X4 # 2):

1.2 +v0_1 +v3_0 -v4_2

A feature set factor consists of a list of mutually exclusive features, each in the format described
above. The list is surrounded is preceded by the word “features” and an opening brace (‘{’), and
followed by a closing brace (‘}’). For example:

features {

-1.005034e-02 +v5_1 +v0_1
-2.302585e+00 +v5_0 +vO0_1
-4.605170e+00 +v5_1 +v0_0O
-1.053605e-01 +v5_0 +v0_0
}

A table factor has the same format as a feature set, except with the word “table” in place of
the word “features”, and the features in the list need not be mutually exclusive. After reading a
table factor, Libra creates an internal tabular representation. The size of this table is exponential
in the number of variables referenced by the listed features.

The format of a tree factor is similar to a LISP s-expression, as illustrated in the following
example:

tree {
(vi_0
(v3_0
(v0_0
(v2_0 -1.905948e-02 -3.969694e+00)
(v2_0 -5.320354e-02 -2.960105e+00))
(v2_0 -2.341261e-01 -1.566675e+00))

*Described here: http://www.cs.cmu.edu/~fgcozman /Research/InterchangeFormat/Old /xmlbif02.html.

3Scripts to translate between BIF and XBIF are available here:
http://ssli.ee.washington.edu/~bilmes/uai06InferenceEvaluation/uai06-repository/scripts/.

4The WinMine Toolkit also provides a visualization tool for XMOD files, DNetBrowser . exe.



(v2_0 -2.121121e-01 -1.654822e+00))
+

When z1 =0, x3 = 1, and x9 = 1, then the log value of this factor is -1.566675.

To indicate an infinite weight, write “inf” or -inf”.

Libra also supports the Markov network model file format used the by the UAI inference compe-
tition, described here: http://www.cs.huji.ac.il/project/UAI10/fileFormat.php. However,
Libra does not currently support the UAI evidence or result file formats.

4 Using Libra

The best introduction to installing Libra and using it to solve problems is the Libra tutorial, which
is available from the Libra home page and included in the standard distribution. In this section,
we provide more complete descriptions of the algorithms and their command line options.

4.1 Common Options

Programs in Libra are designed to be run on the command line in a UNIX-like environment or
called by scripts in research or application workflows. No GUI environment is provided. A list of
options for any command can be produced by running it with no arguments, or by running it with
a —help or ——help argument. We now describe common options shared by many or all programs
in the toolkit.

The output of the Libra programs is controlled by the following options, available in every
program:

-log <file>: Output logging information to the specified file

-v: Enable verbose logging output. Verbose output always lists the full command line argu-
ments, and often includes additional timing information.

-debug: Enable both verbose and debugging logging output. Debugging output varies from
program to program and is subject to change.

Option names for the following common options are mostly standardized among the Libra
programs that use them:

-c <file>: Arithmetic circuit

-i <file>: Train or test data

-m <file>: Model file, in MN, XMOD, BIF, or AC format
-0 <file>: Output model or data

-seed <int>: Seed for the random number generator

-q <file>: Query file

-ev <file>: Query evidence file



-mo <file>: File for writing marginals or MPE states
-sameev: If specified, use the first line in the evidence file as the evidence for all queries.

The last four options are exclusive to inference algorithms. Each inference algorithm prints out
the conditional log probability of each query given the evidence. To output timing information as
well, use the verbose flag, -v.

4.2 Mean Field

Mean field (mf) is an approximate inference algorithm that attempts to minimize the reverse KL
divergence between the specified MN or BN (possibly conditioned on evidence) and a fully fac-
tored distribution (i.e., a product of single-variable marginals). Libra’s implementation updates
one marginal at a time until all marginals have converged, using a queue to keep track of which
marginals may need to be updated (see Algorithm 11.7 from [7]). With the -roundrobin flag,
Libra will instead update all marginals in parallel. The stopping criteria can be adjusted using
the parameters -thresh (convergence threshold) or -maxiter (maximum number of iterations).
Rather than working directly with table or tree CPDs, mf converts both to a set of features and
works directly with the log-linear representation, ensuring that the compactness of tree CPDs is
fully exploited.

Our implementation is the first to support mean field inference dependency networks, using the
-depnet option. Since a dependency network may not represent a consistent probability distribu-
tion, the reverse KL divergence is undefined. However, the algorithm can be applied to dependency
networks and tends to converge in practice [11].

4.3 Loopy Belief Propagation

Loopy belief propagation (bp) is the application of an exact inference algorithm for trees to general
graphs that may have loops. bp is implemented on a factor graph, in which variables pass messages
to factors and factors pass messages back to variables in each iteration. All factor-to-variable or
variable-to-factor messages are passed in parallel, a message passing schedule known as “flooding.”
For BNs, each factor is a CPD for one of the variables. For factors represented as trees or sets of
features, the running time of a single message update is linear in the number of leaves or features,
respectively. This allows bp to run on networks with factors that involve 100 or more variables, as
long as the representation is compact.

4.4 Max-Product

The max-product algorithm (maxprod) is an approximate inference algorithm to find the most
probable explanation (MPE) state, the most likely configuration of the non-evidence variables
given the evidence. Like bp, max-product is an exact inference algorithm in a tree, but may be
incorrect in graphs with loops. Max-product is implemented identically to bp, but replacing sum
operations with max.

4.5 Gibbs Sampling

Gibbs sampling (gibbs) is an instance of Markov-chain Monte Carlo (MCMC) that generates
samples by resampling a single variable at a time conditioned on its Markov blanket. The probability



of any query can be computed by counting the fraction of samples that satisfy the query. When
evidence is specified, the values of the evidence variables are fixed and never resampled. By default,
our implementation computes the probabilities of conjunctive queries (e.g., P(X1 A Xo2 A = Xy))
or marginal queries (e.g., P(X7)), optionally conditioned on evidence. This is potentially more
powerful than MF and BP, which only compute marginal probabilities. To compute only marginal
probabilities with Gibbs sampling, use the -marg option. This is helpful when the specific queries
are very rare (such as long conjunctions) but can be well approximated as the product of the
individual marginal probabilities.

The running time of Gibbs sampling depends on the number of samples taken. Use -burnin
to set the number of burn-in iterations (sampling steps thrown away before counting the samples);
use —sampling to set the number of sampling iterations; and use -chains to set the number of
repeated sampling runs. For convenience, these parameters can also be set using the -speed option
which allows arguments of fast, medium, slow, slower, and slowest, which range from 1000 to 10
million total sampling iterations. All speeds except for fast use 10 chains and a number of burn-in
iterations equal to 10% of the sampling iterations. Samples can be output to a file using the -so
option.

By default, Libra uses Rao-Blackwellization to make the probabilities slightly more accurate.
This adds fractional counts to multiple states by examining the distribution of the variable to be
resampled. For instance, suppose we wish to compute P(X3). At some point, while resampling X3,
we find that the probability of X3 = true given its current Markov blanket is 0.001. After flipping
a biased coin, we set X3 to false. In traditional Gibbs sampling, we would add a count of 1 to the
case where X3 is false and 0 to the case where X3 is true. In our Rao-Blackwellized version, we
add counts of 0.999 and 0.001, respectively. This applies both to computing conjunctive queries
and marginals. It can be disabled with the flag -norb.

Gibbs sampling can be run on a BN, MN, or dependency network. Dependency networks must
be in an accepted BN file format, and the -depnet flag must be used.

4.6 AC Variable Elimination

AC variable elimination (acve) [1] compiles a BN or MN by simulating variable elimination and
encoding the addition and multiplication operations into an AC. ACVE represents the original and
intermediate factors as algebraic decision diagrams (ADDs) with AC nodes at the leaves. As each
variable is summed out, the leaves of the ADDs are replaced with new sum and product nodes.
By producing an AC, ACVE can answer many queries simultaneously. By using ADDs, ACVE
can exploit context-specific independence much better than previous methods based on variable
elimination. See Chavira and Darwiche [1] for details.

The one difference between our implementation and the standard algorithm is that we extend
our ADDs to allow k-way splits for variables with k values. In the standard algorithm, k-valued
variables are converted into k Boolean variables, along with constraints to ensure that exactly one
of these variables is true at a time. We also omit the circuit node cache, which we find has little
effect on circuit size at the cost of significantly slowing compilation.

4.7 Chow-Liu Algorithm

The Chow-Liu algorithm (cl) [4] learns the maximum likelihood tree-structured BN from data.
The algorithm works by first computing the mutual information between each pair of variables and



then greedily adding the edge with highest mutual information (excluding edges that would form
cycles) until a spanning tree is formed. (For sparse data, faster implementations are possible [12].)

4.8 AC Structure Learning

LearnAC (aclearnstruct) [9] learns a BN with decision-tree CPDs using the size of the corre-
sponding AC as a learning bias. This effectively trades off accuracy and inference complexity. It
outputs both a BN and an AC. This is the most complex algorithm in the toolkit by far.

To learn a BN without learning an AC, use the -noac flag. This performs the exact same
structure search as before, but without constructing an AC, and with no penalty based on inference
complexity. This is useful for obtaining a baseline BN.

An allowed parents file may be specified (-parents <file>), which restricts the sets of parents
structure learning is allowed to choose for each variable. Restrictions can limit the parents to a
specific set of parents (“none except 1 2 8 10”) or to any parent not in a list (“all except 3
5”7). An example parent file is below:

# This is a comment

0: all except 1 3 # only vars 1 and 3 may be parents of 0

1: none except 5 2 # var 1 may only have var 5 or 2 as a parent
2: none #

5: all #

var 2 may have no parents
var 5 may have any parents

4.9 DN Structure Learning

A dependency network (DN) specifies a conditional probability distribution (CPD) for each variable
given its parents [6]. However, unlike a Bayesian network, the graph of parent-child relationships
may contain cycles. As a result, DNs do not always represent consistent probability distributions,
making their semantics somewhat problematic. However, they can still be learned from data and
queried using Gibbs sampling or the mean field inference algorithm [11].

Dependency networks with tree-structured conditional probabiity distributions can be learned
with dnlearn. The algorithm used is similar to that of Heckerman et al. [6]. As with aclearnstruct,
the user can set the prior counts on the multinomial leaf distributions (-prior) as well as a per-
split penalty (-ps) to prevent overfitting. The -kappa option is equivalent to a setting a per-split
penalty of log kappa.

4.10 AC Parameter Learning

AC parameters can be learned or otherwise optimized using acopt. The input circuit is specified
with -c.

Given training data (-i <file>), acopt finds parameters that maximize the log-likelihood of
the training data. This works for any AC that represents a log linear model, including BNs and
Markov networks. Our implementation uses L-BFGS [8], a standard convex optimization method.
The gradient of the log-likelihood is computed in each iteration by differentiating the circuit, which
is linear in circuit size. Since this is a convex problem, the parameters will eventually converge to
their optimal values. The maximum number of iterations can be specified using -maxiter.

Given a BN or MN (-m) and, optionally, evidence (-ev), acopt supports two other kinds of
parameter optimization. Neither is yet described in the literature.



The first is to minimize the reverse KL divergence between the source network (optionally
conditioned on evidence) and the AC (i.e., Dkr,(AC||BN)). This is similar to mean field, except
that an AC is used in place of a fully factored distribution, and the optimization is performed using
L-BFGS instead of message passing.

The second type of optimization (-gibbs) approximately minimizes the regular KL divergence,
Dx1.(BN||AC) or Dk1,(MNJ|AC), by generating samples from the BN or MN (optionally conditioned
on evidence) and selecting AC parameters to maximize their likelihood. Samples are generated using
Gibbs sampling, with parameters analogous to those in the gibbs program. The most important
options are -gspeed or -gc/-gb/-gs to set the number of samples. Increasing the number of
samples yields a better approximation but takes longer to run. This is similar to running gibbs,
saving the samples using -so, and then running acopt with -i, as described above. However,
acopt -gibbs is faster since it only needs to compute the sufficient statistics instead of storing and
reloading the entire set of samples.

The main application of acopt is for for performing approximate inference using ACs, as de-
scribed by [10]. The key idea of [10] is to generate samples from a Bayesian network (bnsample),
learn an AC from the samples (aclearn), and then optimize the AC’s parameters for specific
evidence (acopt).

4.11 Exact AC Inference

Exact inference in ACs is done through acquery, which accepts similar arguments to the approx-
imate inference algorithms. See Darwiche [5] for a thorough description of ACs and how to use
them for inference. We provide a brief description of the methods below.

To compute the probability of a conjunctive query, we set all indicator variables in the AC
to zero if they are inconsistent with the query and to one if they are consistent. For instance,
to compute P(X; = true A X3 = false), we would set the indicator variables for X; = false and
X3 = true to zero and all others to one. Evaluating the root of the circuit gives the probability of
the input query. Conditional probabilities are answered by taking the ratio of two unconditioned
probabilities:

P(QANE)
P(E)

where @ and E are conjunctions of query and evidence variables, respectively. Both P(Q A E) and
P(E) can be computed using previously discussed methods. Evaluating the circuit is linear in the
size of the circuit.

We can also differentiate the circuit to compute all marginals in parallel (-marg), optionally
conditioned on evidence. Differentiating the circuit consists of an upward pass and a downward
pass, each of which is linear in the size of the circuit. See Darwiche [5] for more details.

Finally, we can compute the most probable explanation (MPE) state (-mpe), which is the most
likely configuration of the non-evidence variables given the evidence. When -mpe is used without a
query file, it prints out the MPE state for each evidence. When a query file is specified, it prints out
the fraction of non-evidence variables that are different between the query state and the inferred
MPE state. When the MPE state is not unique, acquery selects one of the MPE states arbitrarily.

P(QIE) =



4.12 Utilities

The program mscore computes the log-likelihood of a set of examples for BNs or ACs. For MNs,
mscore can be used to compute the unnormalized log-likelihood, which will differ from the true log-
likelihood by log Z, the log partition function of the MN. Using the -pl1 flag, mscore will compute
the pseudo-log-likelihood of a set of examples for BNs, MNs, or DNs. Pseudo-log-likelihood is not
currently supported for ACs.

The program bnsample can be used to generate a set of independent samples from a BN using
forward sampling. FEach variable is sampled given its parents, in topological order. Use -n to
indicate the number of samples and -seed to choose a random seed.

The program mconvert performs conversions among the AC, BN, and MN file formats, and
conditions models on evidence (-ev). ACs can be converted to ACs or MNs; BNs can be converted
to BNs or MNs; and MNs can be converted to MNs. If an evidence file is specified (using -ev),
then the output model must be an AC or MN. If the -feat option is specified when outputting an
MN, then each factor in the MN will be a set of features.

fstats gives basic information for files of most types supported by Libra.
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